bayesnec: A Bayesian No-Effect- Concentration (NEC) Algorithm

Implementation of No-Effect-Concentration estimation that uses 'brms' (see Burkner (2017)<doi:10.18637/jss.v080.i01>; Burkner (2018)<doi:10.32614/RJ-2018-017>; Carpenter 'et al.' (2017)<doi:10.18637/jss.v076.i01> to fit concentration(dose)-response data using Bayesian methods for the purpose of estimating 'ECX' values, but more particularly 'NEC' (see Fox (2010)<doi:10.1016/j.ecoenv.2009.09.012>. This package expands and supersedes an original version implemented in R2jags, see Fisher, Ricardo and Fox (2020)<doi:10.5281/ZENODO.3966864>.

Version: 2.0.1
Depends: R (≥ 4.0), brms, ggplot2
Imports: formula.tools, loo, extraDistr, dplyr, tidyr, purrr, tidyselect, evaluate, rlang
Suggests: rstan, knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2021-09-20
Author: Rebecca Fisher [aut, cre], Diego Barneche [aut], Gerard Ricardo [aut], David Fox [aut]
Maintainer: Rebecca Fisher <r.fisher at aims.gov.au>
BugReports: https://github.com/open-aims/bayesnec/issues
License: GPL-2
URL: https://open-aims.github.io/bayesnec/
NeedsCompilation: no
Materials: README NEWS
CRAN checks: bayesnec results

Downloads:

Reference manual: bayesnec.pdf
Vignettes: Single model usage
Multi model usage
Model details
Priors
Comparing posterior predictions
Package source: bayesnec_2.0.1.tar.gz
Windows binaries: r-devel: bayesnec_2.0.1.zip, r-release: bayesnec_2.0.1.zip, r-oldrel: bayesnec_2.0.1.zip
macOS binaries: r-release (arm64): bayesnec_2.0.1.tgz, r-release (x86_64): bayesnec_2.0.1.tgz, r-oldrel: bayesnec_2.0.1.tgz
Old sources: bayesnec archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bayesnec to link to this page.