deeptrafo: Fitting Deep Conditional Transformation Models

Allows for the specification of deep conditional transformation models (DCTMs) and ordinal neural network transformation models, as described in Baumann et al (2021) <doi:10.1007/978-3-030-86523-8_1> and Kook et al (2022) <doi:10.1016/j.patcog.2021.108263>. Extensions such as autoregressive DCTMs (Ruegamer et al, 2022, <doi:10.48550/arXiv.2110.08248>) and transformation ensembles (Kook et al, 2022, <doi:10.48550/arXiv.2205.12729>) are implemented.

Version: 0.1-1
Depends: R (≥ 4.0.0), Formula, tensorflow (≥ 2.2.0), keras (≥ 2.2.0), tfprobability (≥ 0.15), deepregression
Imports: mlt, variables, stats, purrr, survival, R6, reticulate
Suggests: testthat, knitr, ordinal, tram, cotram, covr
Published: 2022-11-22
DOI: 10.32614/CRAN.package.deeptrafo
Author: Lucas Kook [aut, cre], Philipp Baumann [aut], David Ruegamer [aut]
Maintainer: Lucas Kook <lucasheinrich.kook at>
License: GPL-3
NeedsCompilation: no
CRAN checks: deeptrafo results


Reference manual: deeptrafo.pdf


Package source: deeptrafo_0.1-1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): deeptrafo_0.1-1.tgz, r-oldrel (arm64): deeptrafo_0.1-1.tgz, r-release (x86_64): deeptrafo_0.1-1.tgz, r-oldrel (x86_64): deeptrafo_0.1-1.tgz
Old sources: deeptrafo archive


Please use the canonical form to link to this page.