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Abstract

Frailty models are getting more and more popular to account for overdispersion and/or
clustering in survival data. When the form of the baseline hazard is somehow known in
advance, the parametric estimation approach can be used advantageously. Nonetheless,
there is no unified widely available software that deals with the parametric frailty model.
The new parfm package remedies that lack by providing a wide range of parametric
frailty models in R. The available baseline hazard failies are: exponential, Weibull, inverse
Weibull (Fréchet), Gompertz, lognormal, log-kewNormal, and loglogistic. The gamma,
positive stable, inverse Gaussian, and lognormal frailty distributions can be specified,
together with five different baseline hazards. Parameter estimation is done by maximising
the marginal log-likelihood, with right-censored and possibly left-truncated data. In the
multivariate setting, the inverse Gaussian may encounter numerical difficulties with a
huge number of events in at least one cluster. The positive stable model shows analogous
difficulties but an ad-hoc solution is implemented, whereas the gamma model is very
resistant due to the simplicity of its Laplace transform.

Keywords: parametric frailty models, survival analysis, gamma, positive stable, inverse Gaus-
sian, Weibull, inverse Weibull, Fréchet, exponential, Gompertz, loglogistic, lognormal, logskewnor-
mal, skew-normal, R, parfm.

This vignette is an up-to-date versuib of the paper published in the Journal of Statistical
Software in 2012: ?.

1. Introduction

Survival data, or time-to-event data, measure the time elapsed from a given origin to the
occurrence of an event of interest. The observation of survival data is very common in
the medical fields where, for instance, the clinician is interested in the time to relapse of a
pathology after the therapy. However, the researcher cannot always observe the event due
to censoring. Right-censoring occurs when the time of interest cannot be observed but only
a lower bound is available. Particular techniques are therefore required as described by a
number of textbooks, e.g., ?.

Most commonly, survival data are handled by means of the proportional hazards regression
model popularised by ?. But correct inference based on those proportional hazards models
needs independent and identically distributed samples. Nonetheless, subjects may be exposed
to different risk levels, even after controlling for known risk factors; this is because some
relevant covariates are often unavailable to the researcher or even unknown (univariate case).
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Also, the study population may be divided into clusters so that subjects from the same
cluster behave more cohesively than subjects from different clusters (multivariate case). Lots
of examples of clustered survival data arise from large-scale clinical trials in which patients
are recruited at several hospital centres (??). Another classical example is the analysis of
lifetimes of matched human organs such as eyes or kidneys.

The frailty model, introduced in the biostatistical literature by ?, and discussed in details by ?,
?, and by ?, accounts for this heterogeneity in baseline. It is an extension of the proportional
hazards model in which the hazard function depends upon an unobservable random quantity,
the so-called frailty, that acts multiplicatively on it.

The gamma frailty model assumes a gamma distribution for the frailties. Arguably, this is
the most popular frailty model due to its mathematical tractability. The lognormal frailty
model is also well-liked for its strong link with generalised linear mixed models. Other frailty
distributions include the positive stable and the inverse Gaussian. All of these are reviewed
by ? (?, Chapter 4).

Of particular interest in the multivariate case is the association between related event times.
Indeed, different dependence structures result from different frailty distributions (?). In par-
ticular, positive stable frailties typically generate very strong dependence initially while, at
equal global dependence, gamma frailties lead to stronger dependence at late times, and in-
verse Gaussian frailties are in between the two. These three distributions therefore cover a
wide range of association structures in the data.

Estimation of the frailty model can be parametric or semi-parametric. In the former case,
a parametric density is assumed for the event times, resulting in a parametric baseline haz-
ard function. Estimation is then conducted by maximising the marginal log-likelihood (see
Section 2). In the second case, the baseline hazard is left unspecified and more complex tech-
niques are available to approach that situation (?). Even though semi-parametric estimation
offers more flexibility, the parametric estimation will be more powerful if the form of the
baseline hazard is somehow known in advance. Further, the estimation technique is much
simpler.

Slowly but surely, a variety of estimation procedures becomes available in standard statis-
tical software. In R (?), the coxph() function from the survival package (?) handles the
semi-parametric model with gamma and lognormal frailties. Important options supported by
coxph() and its output are described in details by ? (?, Chapter 9). Recently, the frailty-
pack package (?) by ? and ? has been updated and it stands now for gamma frailty models
with a semi-parametric estimation but also with a parametric approach using the Weibull
baseline hazard. Other R packages include coxme (?) and phmm (?). These two perform
semi-parametric estimation in the lognormal frailty model. SAS (?) also deals with the log-
normal distribution. On the one hand, proc phreg can now fit the semi-parametric lognormal
frailty model. On the other hand, proc nlmixed deals with the parametric version by using
Gaussian quadrature to approach the marginal likelihood; see, e.g., ? (?, Example 4.16). In
the parametric setting, STATA (?) provides some flexibility. The streg command (?) is
able to perform maximum likelihood estimation with various choices of baselines: exponen-
tial, Weibull, Weibull, Gompertz, lognormal, loglogistic, and generalised gamma. Take notice,
however, that STATA fits the accelerated failure time model. Still, with exponential or Weibull
baselines, both the proportional hazards and the accelerated failure time representations are
allowed. As for the frailty distribution, the gamma and the inverse Gaussian are the only two
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that are supported. On a side note, Bayesian analyses can be conducted in WinBUGS (?); see,
e.g., ? (?, Example 6.4). For a deeper overview of who supports what, and for a comparison
of some of the aforementioned functions, see ?.

Hereinbelow, we illustrate parfm (?), a new R package that fits the gamma, the positive
stable, the inverse Gaussian, and lognormal proportional hazards frailty models with either
exponential, Weibull, inverse Weibull (Fréchet), Gompertz, lognormal, log-skewNormal, or
loglogistic baseline. The main advantage of parfm therefore relies on the large choice of
frailty distributions and parametric baseline hazards it supports. Parameter estimation is
done by maximising the marginal log-likelihood.

The model and the marginal log-likelihood are shown in Section 2. There, we also outline the
estimation method, while Sections 2.1–2.4 provide details for the three frailty distributions
supported by parfm. In Section 3, we apply parfm to a real dataset in order to illustrate its
use and its output. Section 4 concludes with remarks.

2. Model estimation

From a modelling point of view, the multivariate model includes the univariate. Because of
this, we shall mainly refer to the first. However, they are used in two different contexts:
in the former case, the frailty distribution variability is related to a measure of dependence
between clustered subjects, whereas it is rather interpreted as a measure of overdispersion in
the latter.

Model. The frailty model is defined in terms of the conditional hazard

hij(t | ui) = h0(t)ui exp (x>ijβ),

with i ∈ I = {1, . . . , G} and j ∈ Ji = {1, . . . , ni}, where h0(·) is the baseline hazard function,
ui the frailty term of all subjects in group i, xij the vector of covariates for subject j in group
i, and β the vector of regression coefficients.

If the number of subjects ni is 1 for all groups, then the univariate frailty model is obtained
(?, Chapter 3), otherwise the model is called the shared frailty model (? ?, Chapter 7; ? ?)
because all subjects in the same cluster share the same frailty value ui.

Baseline hazard. Under the parametric approach, the baseline hazard is defined as a
parametric function and the vector of its parameters, say ψ, is estimated together with the
regression coefficients and the frailty parameter(s). A bunch of possibilities are considered
in the literature; in the parfm package the exponential, Weibull, inverse Weibull (Fréchet),
Gompertz, lognormal, logSkewNormal (?), and loglogistic distributions are available. Table
1 shows the hazard and cumulative hazard functions for each of these distributions.

Frailty distribution. The frailty ui is an unobservable realisation of a random variable U
with probability density function f(·)—the frailty distribution. Since ui multiplies the hazard
function, U has to be non-negative. Another constraint is further needed for identifiability
reasons, similar to the zero-mean constraint of a random effect in a standard linear mixed
model. More specifically, the mean of U is typically restricted to unity when possible (i.e.,
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when E(U) exists) in order to separate the baseline hazard from the overall level of the random
frailties.

Various frailty distributions have been proposed in the literature (?, Chapter 4). Hereinafter,
we shall focus on the gamma, the positive stable, and the inverse Gaussian frailty distributions.
In all of these three, a single heterogeneity parameter (denoted either θ or ν) indexes the degree
of dependence. In the following, ξ is used as a generic notation to denote either θ or ν.

Data. For right-censored clustered survival data, the observation for subject j ∈ Ji =
{1, . . . , ni} from cluster i ∈ I = {1, . . . , G} is the couple zij = (yij , δij), where yij =
min(tij , cij) is the minimum between the survival time tij and the censoring time cij , and
where δij = I(tij ≤ cij) is the event indicator. Covariate information may also have been
collected; in this case, zij = (yij , δij ,xij), where xij denote the vector of covariates for the
ij-th observation. Further, if left-truncation is also present, truncation times τij are gathered
in the vector τ .

Likelihood. In the parametric setting, estimation is based on the marginal likelihood in
which the frailties have been integrated out by averaging the conditional likelihood with
respect to the frailty distribution. Under assumptions of non-informative right-censoring and
of independence between the censoring time and the survival time random variables, given the
covariate information, the marginal log-likelihood of the observed data z = {zij ; i ∈ I, j ∈ Ji}
can be written as (?)

`marg(ψ,β, ξ; z | τ ) =

G∑
i=1


 ni∑
j=1

δij

(
log(h0(yij)) + x>ijβ

)
+ log

(−1)diL(di)
 ni∑
j=1

H0(yij) exp(x>ijβ)


− log

L
 ni∑
j=1

H0(τij) exp(x>ijβ)

 , (1)

with di =
∑ni

j=1 δij the number of events in the i-th cluster, and L(q)(·) the q-th derivative of
the Laplace transform of the frailty distribution defined as

L(s) = E
[

exp(−Us)
]

=

∫ ∞
0

exp(−uis)f(ui)dui, s ≥ 0.

Estimation. Estimates of ψ, β, and ξ are obtained by maximising the marginal log-
likelihood 1; this can easily be done if one is able to compute higher order derivatives L(q)(·)
of the Laplace transform up to q = max{d1, . . . , dG}. Symbolic differentiation might be
performed in R, but is impractical here, mainly because this is very time consuming. There-
fore, explicit formulas are rather desirable. Further, they will be used in the calculation of
predictions as shown below.
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Prediction. Besides parameter estimates, prediction of frailties are sometimes desirable.
As an aside, they are needed at each expectation step of the expectation-maximisation (EM)
algorithm that fits the semi-parametric frailty model.

The frailty term ui can be predicted by ûi = E
(
U | zi, τi; ψ̂, β̂, ξ̂

)
, with zi and τi the data

and the truncation times of the i-th cluster. This conditional expectation can be achieved as

E (U | zi, τi;ψ,β, ξ) = −
L(di+1)

(∑ni
j=1H0(yij) exp(x>ijβ)

)
L(di)

(∑ni
j=1H0(yij) exp(x>ijβ)

) ,

which can be seen from Appendix A.2, together with E
[
U q exp(−Us)

]
= (−1)qL(q)(s).

Outline. In Sections 2.1–2.4 we illustrate the three frailty distributions which are available
in the parfm package: the gamma, the positive stable, the inverse Gaussian, and the lognor-
mal. Note that the Laplace transform of a lognormal random variable does not exist in a
closed form. Hence, Equation 1 requires numerical approximation in that case, which is not
considered here.

2.1. Gamma frailty

A gamma frailty term is a random variable U ∼ Gam?(θ) with probability density function

f(u) =
θ−

1
θ u

1
θ−1 exp (−u/θ)

Γ(1/θ)
, θ > 0,

where Γ(·) is the gamma function. It corresponds to a gamma distribution Gam(µ, θ) with µ
fixed to 1 for identifiability. Its variance is then θ.

The associated Laplace transform is given by

L(s) = (1 + θs)−
1
θ , s ≥ 0,

and it is easy to show that, for q ≥ 1,

L(q)(s) = (−1)q (1 + θs)−q
[
q−1∏
l=0

(1 + lθ)

]
L(s).

Therefore, in Equation 1, we have

log
(

(−1)qL(q)(s)
)

= −
(
q +

1

θ

)
log(1 + θs) +

q−1∑
l=0

log(1 + lθ). (2)

For the gamma distribution, the Kendall’s tau (?, Section 4.2), which measures the association
between any two event times from the same cluster in the multivariate case, can be computed
as

τ =
θ

θ + 2
∈ (0, 1).



Marco Munda, Federico Rotolo, Catherine Legrand 7

2.2. Positive stable frailty

? (?, Section A.3.3) introduces the positive stable distributions as a family with two param-
eters: a scale δ > 0 and the so-called index α < 1. Imposing δ = α, the positive stable frailty
distribution PS?(ν) is obtained, with ν = 1− α.

The associated probability density function is then

f(u) = − 1

πu

∞∑
k=1

Γ(k(1− ν) + 1)

k!

(
−uν−1

)k
sin((1− ν)kπ), ν ∈ (0, 1).

The mean and variance are both undefined. Therefore, the heterogeneity parameter ν does
not correspond to the variance of the frailty term. Because of that, we intentionally call it ν
instead of θ to avoid misinterpretation.

In contrast to the probability density function, the associated Laplace transform takes a very
simple form,

L(s) = exp
(
−s1−ν

)
, s ≥ 0,

and ? found that, for q ≥ 1,

L(q)(s) = (−1)q
(
(1− ν)s−ν

)q [ q−1∑
m=0

Ωq,ms
−m(1−ν)

]
L(s),

where the Ωq,m’s are polynomials of degree m, given recursively by

Ωq,0 = 1,

Ωq,m = Ωq−1,m + Ωq−1,m−1

{
q − 1

1− ν
− (q −m)

}
, m = 1, . . . , q − 2, (3)

Ωq,q−1 = (1− ν)1−q
Γ(q − (1− ν))

Γ(ν)
·

It follows that

log
(

(−1)qL(q)(s)
)

= q (log(1− ν)− ν log(s)) + log

[
q−1∑
m=0

Ωq,ms
−m(1−ν)

]
− s1−ν . (4)

With clustered data, the Kendall’s tau for positive stable distributed frailties is

τ = ν ∈ (0, 1).

2.3. Inverse Gaussian frailty

The inverse Gaussian frailty distribution IG?(θ) has density

f(u) =
1√
2πθ

u−
3
2 exp

(
−(u− 1)2

2θu

)
, θ > 0.
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The mean and the variance are 1 and θ, respectively. For the Laplace transform, one has

L(s) = exp

(
1

θ

(
1−
√

1 + 2θs
))

, s ≥ 0,

and, for q ≥ 1,

L(q)(s) = (−1)q (2θs+ 1)−
q
2

Kq−(1/2)

(√
2θ−1(s+ 1

2θ )
)

K1/2

(√
2θ−1(s+ 1

2θ )
) L(s), (5)

where K is the modified Bessel function of the second kind (?, Section A.4.2)

Kγ(ω) =
1

2

∫ ∞
0

tγ−1 exp

{
−ω

2

(
t+

1

t

)}
dt, γ ∈ R, ω > 0.

The proof of this result, given in Appendix A.1, sketches a general constructive method to
obtain the derivatives of the Laplace transform for any distribution for which the moments
of U | zi;ψ,β, ξ, the conditional frailty given the data, are known.

Noting that K1/2(ω) =
√

π
2ω exp(−ω), we have

log
(

(−1)qL(q)(s)
)

= −q
2

log(2θs+ 1)+ log
(
Kq−(1/2)(z)

)
−[

1

2

(
log
( π

2z

))
− z
]

+
1

θ

(
1−
√

1 + 2θs
)
, (6)

with z =
√

2θ−1(s+ 1
2θ ).

With multivariate data, an inverse Gaussian distributed frailty yields a Kendall’s tau given
by

τ =
1

2
− 1

θ
+ 2

exp(2/θ)

θ2

∫ ∞
2/θ

exp(−u)

u
du ∈ (0, 1/2).

2.4. Lognormal frailty

The lognormal frailty distribution LN?(θ) has density

f(u) = (2πθ)−
1
2u−1 exp

{
−(log u)2

2θ

}
, (7)

with θ > 0.

If U ∼ LN(θ), then the Laplace transform does not exist in closed form. Consequently

L(q)(x) = (−1)q
∫ ∞
0

uq exp(−ux)f(u) du

= (−1)q
1√
2πθ

∫ ∞
0

uq exp(−ux)
1

u
exp

(
− 1

2θ

(
log(u)

)2)
du
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needs to be approximated (x ≥ 0). By using the change of variable w = log(u), we have

L(q)(x) = (−1)q
1√
2πθ

∫ ∞
−∞

(
exp(w)

)q
exp

(
− exp(w)x

)
exp

(
−w

2

2θ

)
dw

= (−1)q
1√
2πθ

∫ ∞
−∞

exp

{
qw − exp(w)x− w2

2θ

}
dw.

We approximate this by means of the Laplace approximation of integrals. Let

g(w; x, θ) := −qw + exp(w)x+
w2

2θ

g(1)(w; x, θ) :=
dg

dw
(w; x, θ) = −q + exp(w)x+

w

θ

g(2)(w; x, θ) :=
d2g

dw2
(w; x, θ) = exp(w)x+

1

θ
> 0

The approximation consists of replacing g(·) by the first three terms of its Taylor series
expansion around some w̃,

g(w; x, θ) ≈ g(w̃; x, θ) + (w − w̃)g(1)(w̃; x, θ) +
(w − w̃)2

2
g(2)(w̃; x, θ)

The value of w̃ is chosen such that g(1)(w̃; x, θ) = 0, so that L(q)(x) can be approximated by

L(q)(x) ≈(−1)q
1√
2πθ

exp {−g(w̃; x, θ)}

×
∫ ∞
−∞

exp

{
−(w − w̃)2

2
g(2)(w̃; x, θ)

}
dw

=(−1)q
1√
θ

exp
{
−g(w̃; x, θ)

}[
g(2)(w̃; x, θ)

]−1/2
where the last line follows by recognising the kernel of a normal density with mean w̃ and
variance 1/g(2)(w̃; x, θ). This is known as the Laplace approximation. The underlying idea
is that the main contribution to the integral comes from where g(·) is close to its minimum.
We refer to ? for further motivation and explanation of this kind of approximation.

3. Case study

We illustrate the parfm package with the very well-known kidney dataset that contains the
recurrence times to kidney infection for 38 patients using portable dialysis equipment (?).

R> R.Version()[["version.string"]]

[1] "R version 3.3.1 (2016-06-21)"

R> library("parfm")

R> packageDescription("parfm", fields="Version")
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[1] "2.7"

The dataset is available in parfm via the command data("kidney") and it looks like the
following:

R> head(kidney)

id time status age sex disease frail

1 1 8 1 28 1 Other 2.3

2 1 16 1 28 1 Other 2.3

3 2 23 1 48 2 GN 1.9

4 2 13 0 48 2 GN 1.9

5 3 22 1 32 1 Other 1.2

6 3 28 1 32 1 Other 1.2

Each observation corresponds to a kidney, the variable id being the patient’s code. The time
from insertion of the catheter to infection or censoring is stored in time while status is 1
when infection has occurred and 0 for censored observations (catheters may be removed for
reasons other than infection). Three covariates are available: age, the age of the patient
in years, sex, being 1 for males and 2 for females, and disease, the disease type (GN, AN,
PKD or Other). Finally frail is the frailty prediction from the original paper which fits a
semi-parametric lognormal frailty model.

First and foremost, sex is recoded as a 0–1 indicator for ease of interpretation:

R> kidney$sex <- kidney$sex - 1

The hazard of infection will be modelled as a function of the patient’s age and sex. Clearly,
kidneys from the same patient cannot be considered independent. Therefore, the use of a
shared frailty model is advisable, with clusters of size 2 corresponding to patients.

The parfm() function must have the following inputs. formula: a formula with an ob-
ject of class Surv on the left-hand side; cluster: the cluster variable’s name; data: the
dataset; dist: the baseline hazard, either exponential, weibull, gompertz, lognormal or
loglogistic; frailty: the frailty distribution, either none, gamma, possta or ingau.

Model estimation. The model with exponential baseline hazard and gamma frailty dis-
tribution is first fitted.

R> mod <- parfm(Surv(time, status) ~ sex + age, cluster="id",

+ data=kidney, dist="exponential", frailty="gamma")

R> mod

Frailty distribution: Gamma

Basline hazard distribution: Exponential

Loglikelihood: -333.248

ESTIMATE SE p-val
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theta 0.301 0.157

lambda 0.025 0.015

sex -1.485 0.398 <.001 ***

age 0.005 0.011 0.662

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kendall's Tau: 0.131

Standard errors are computed as the square roots of the diagonal elements of the observed
information matrix. According to this model, sex has a significant impact on the hazard of
infection while it is not affected by age. Conditional on the patient’s frailty and on the age,
the hazard of infection for a female at any time t is estimated to be exp(−1.485) ≈ 0.227
times that of a male, with Wald confidence interval

> ci.parfm(mod, level=0.05)["sex",]

low up

0.104 0.495

As for the heterogeneity parameter, it is estimated to be 0.301 which corresponds to a
Kendall’s tau equal to 0.131.

Frailty prediction. Prediction of frailties can be obtained via the predict() function,
with the parametric frailty model object as unique argument. For instance, the predictions
for the gamma–exponential model, mod, are obtained via the command

R> u <- predict(mod)

which returns an object of class predict.parfm. These predictions can easily be plotted
(Figure 1) with the command plot(u, sort="i").

Comparison of different models. In some circumstances, it might be useful to easily
obtain AIC and BIC values for a series of candidate models. This can be done using the
select.parfm() function. Its use is similar to that of the parfm() function, but the dist

and frailty values are vectors that contain all the alternatives to try.

R> kidney.parfm <- select.parfm(Surv(time, status) ~ sex + age,

+ cluster="id", data=kidney,

+ dist=c("exponential", "weibull", "loglogistic",

+ "lognormal", "logskewnormal"),

+ frailty=c("gamma", "ingau", "possta", "lognormal"))

R> kidney.parfm

AIC: gamma ingau possta lognor

exponential 674 676 682 675
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Figure 1: Prediction of frailties for the kidney dataset as given by the parametric gamma–
exponential frailty model.

weibull 674 677 682 676

loglogistic 685 685 686 685

lognormal 679 679 681 679

logskewnormal 681 681 682 681

BIC: gamma ingau possta lognor

exponential 684 685 692 685

weibull 686 688 694 687

loglogistic 697 697 697 696

lognormal 691 691 692 691

logskewnormal 695 695 696 695

The results can be plotted (Figure 2) via the command plot(kidney.parfm). In this partic-
ular example, the exponential baseline seems to be a good candidate.

As a comparison, the model with inverse Gaussian distributed frailties is fitted by changing
the frailty argument into ‘ingau’.

R> parfm(Surv(time, status) ~ sex + age, cluster="id",

+ data=kidney, dist="exponential", frailty="ingau")
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Figure 2: AIC and BIC values of parfm models for the kidney dataset.

Frailty distribution: Inverse Gaussian

Basline hazard distribution: Exponential

Loglikelihood: -333.85

ESTIMATE SE p-val

theta 0.375 0.259

lambda 0.022 0.013

sex -1.310 0.373 <.001 ***

age 0.004 0.011 0.693

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kendall's Tau: 0.125

In this case, the conclusions drawn from the previous two models are essentially analogous.

Consider now the model with the positive stable frailty distribution. In this example, it
converges to a solution which is not valid (ν = 0) with the default settings.

R> parfm(Surv(time, status) ~ sex + age, cluster="id",

+ data=kidney, dist="exponential", frailty="possta")

Frailty distribution: Positive Stable

Basline hazard distribution: Exponential

Loglikelihood: -337.132

ESTIMATE SE p-val

nu 0.000

lambda 0.012



14 parfm: Parametric Frailty Models in R Package vignette, V. 1.4 (January 25th, 2017)

sex -0.885

age 0.004

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kendall's Tau: 0

Warning message:

In parfm(Surv(time, status) ~ sex + age, cluster = "id", data = kidney, :

Error in solve.default(res$hessian) :

Lapack routine dgesv: system is exactly singular

The default initial value for ν is 1/2 in the case of positive stable frailties; it can be changed
by means of the iniFpar option in parfm(). Let us try with ν = 0.25.

R> parfm(Surv(time, status) ~ sex + age, cluster="id",

+ data=kidney, dist="exponential", frailty="possta",

+ iniFpar=0.25)

Execution time: 1.71 second(s)

Frailty distribution: Positive Stable

Basline hazard distribution: Exponential

Loglikelihood: -336.182

ESTIMATE SE p-val

nu 0.112 0.084

lambda 0.014 0.008

sex -0.951 0.348 0.006 **

age 0.004 0.011 0.698

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kendall's Tau: 0.112

The problem might also be fixed by changing the optimisation method (see optimx(); ?). By
default it is set to ‘BFGS’, but it can be changed through the method option.

R> parfm(Surv(time, status) ~ sex + age, cluster="id",

+ data=kidney, dist="exponential", frailty="possta",

+ method="Nelder-Mead")

Execution time: 1.51 second(s)

Frailty distribution: Positive Stable

Basline hazard distribution: Exponential

Loglikelihood: -336.182
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ESTIMATE SE p-val

nu 0.112 0.084

lambda 0.014 0.008

sex -0.951 0.348 0.006 **

age 0.004 0.011 0.694

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kendall's Tau: 0.112

In this example the results obtained by changing the optimisation method are the same as
those obtained by changing the initial value of ν. When convergence problems occur, using
different starting values and/or different optimisation methods is generally sufficient to find
the global maximum of the marginal likelihood function.

Finally we provide a comparison with the semi-parametric model. As an example, we fit the
semi-parametric model with gamma frailties via the coxph() function.

R> coxph(Surv(time, status) ~ sex + age +

+ frailty(id, distribution="gamma", eps=1e-11),

+ outer.max=15, data=kidney)

coef se(coef) se2 Chisq DF p

sex -1.58323 0.4594 0.3515 11.88 1.0 0.00057

age 0.00522 0.0119 0.0088 0.19 1.0 0.66000

frailty(id, distribution 22.96 12.9 0.04100

Variance of random effect= 0.408 I-likelihood = -181.6

Estimates of regression parameters are quite similar to those of the exponential–gamma model,
while the frailty variance is sensibly different, arguably because of the difference in how the
baseline hazard is treated.

4. Discussion

To the best of our knowledge, parametric frailty models are currently especially handled in
STATA by means of the streg command. With parfm, they are now readily fitted in R. Fur-
ther, parfm provides the positive stable frailty distribution which is presently unavailable in
STATA. Actually, except for a SAS macro, ps_frail, developed by ? in the semi-parametric
setting, we are not aware of another package that provides the positive stable frailty distri-
bution.

The parfm package is flexible and easy to use. It provides five distributions for the base-
line hazard and three frailty distributions. Parameter estimation is done by maximising the
marginal log-likelihood given in Equation 1. The optim() function is employed, and its
method option is passed to parfm() (with method="BFGS" by default). If not specified in the
inip option, initial values for all but the heterogeneity parameter are obtained by fitting an
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unadjusted (i.e., without frailty) parametric proportional hazards model. The initial hetero-
geneity parameter can also be specified by the user via the iniFpar option; otherwise it is set
to 1 when frailties follow a gamma or an inverse Gaussian distribution, or to 1/2 when they
follow the positive stable distribution.

Additionally, when frailty="none", parfm() fits the unadjusted parametric proportional
hazards model, similar to survreg() (from the survival package) or to phreg() (from the
eha package; ?). However, survreg() returns the parameter estimates in the log-linear model
and phreg() uses yet another parametrisation (see the documentation). Often, the user
has then to transform back the parameters and to employ the delta method in order to
get estimates for the standard errors. The parfm() function directly uses the proportional
hazards representation.

Nonetheless, parfm might reach its limits when at least one di, the number of events in the
i-th cluster, i ∈ {1, . . . , G}, is very large. First, consider the positive stable distribution and
observe that, for a fixed value of m ∈ {1, . . . , q − 1}, Ωq,m rapidly grows as q increases; see
Equations 3. At the extreme, some of them might exceed the largest representable number
in R. These are then stored as Inf. This, in turn, prevents the marginal log-likelihood 1
to be evaluated and hence maximised. On a side note, also the SAS macro ps_frail that
implements the EM algorithm to fit the semi-parametric positive stable frailty model has
analogous difficulties when the number of events is large (or even moderate). The following
ad-hoc solution is implemented in parfm: in order to keep the polynomials Ωq,m’s reasonably
small, they are divided by some factor 10K which does not change the marginal log-likelihood
except for an additive constant (equal to s ×K × log(10)). The value of K is specified via
the correct option (default is correct=0, i.e., no correction) and parfm() returns the re-
adjusted log-likelihood value. That solution serves the purpose for moderately large values
of di (say up to about 200 events per cluster according to our experience, but it depends on
the data, on the other parameters, and on the hardware characteristics). With the inverse
Gaussian distribution, the Bessel function Kq−1/2(z) in Equation 6 raises the same problem.
Indeed, it explodes when z is small relative to q; see Figure 3. Currently, that distribution
should, therefore, preferably be avoided when there are very large values of di (say above 200
events per cluster according to our experience, but, again, it depends on the data, on the other
parameters and on the hardware characteristics). Moreover, Kq−1/2(z) rapidly goes to zero
as z increases. So, in case of very small apparent heterogeneity, θ → 0 which implies z →∞,
Kq−1/2(z) might be stored as 0 in R and hence log(Kq−1/2(z)) cannot be computed. However,
as this problem occurs in the case of very small heterogeneity, this would rather suggest to fit
the model with frailty="none". When frailties are gamma distributed, which is by far the
most popular assumption in common practice, the quantities involved in Equation 2 do not
raise any worry. In practice, even when dealing with datasets with huge numbers of events
per cluster, there is no real risk of exceeding the range of floating-point numbers.
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A. Proofs

A.1. Derivatives of the Laplace transform of the inverse Gaussian frailty
distribution

On the one hand, for any frailty distribution f(ui; ξ), the α-th moment of U (α ∈ N), con-
ditional on the data from the i-th cluster and on the parameters, can be written in the form

E(Uα | zi, τi;ψ,β, ξ) =
E
(
Udi+α exp (−UHi·,c(yi))

)
E (Udi exp (−UHi·,c(yi)))

, (8)

with Hi·,c(yi) =
∑ni

j=1H0(yij) exp(x>ijβ).

This is a generalisation of a result found by ? which follows from Bayes’s formula applied to
f(ui | zi, τi;ψ,β, ξ) in

E (Uα | zi, τi;ψ,β, ξ) =

∫ ∞
0

uαi f (ui | zi, τi;ψ,β, ξ) dui

(see Appendix A.2 for more details). Now, since the expected values in the right-hand side of
Equation 8 can be written in terms of derivatives of the Laplace transform

E (U q exp(−sU)) = (−1)qL(q)(s), q, s ≥ 0,

we have that

L(di+α) (Hi·,c(yi)) = (−1)αE(Uα | zi, τi;ψ,β, ξ) L(di) (Hi·,c(yi)) . (9)

On the other hand, if U ∼ IG?(θ), then it is easy to show (Appendix A.3) that the condi-
tional distribution of U given the data and the parameters is a generalised inverse Gaussian
distribution:

U | zi, τi;ψ,β, θ ∼ GIG(γGIG , δGIG , θGIG)

with

γGIG = di −
1

2
, (10)

θGIG =
1

2θ
+Hi·,c(yi), (11)

δGIG =
1√
2θ
· (12)

Hence (?, Section A.3.6)

E(Uα | zi, τi;ψ,β, ξ) =

(
θ1/2
GIG

δGIG

)−α
Kγ

GIG
+α(2δGIGθ

1/2
GIG

)

Kγ
GIG

(2δGIGθ
1/2
GIG)

· (13)

Combining (9) and (13), Equation 5 is deduced.
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A.2. Conditional expectation of frailty terms

For ease of notation, let Hi·,c(yi) denote
∑ni

j=1H0(yij) exp(x>ijβ).

For any frailty distribution f(ui; ξ) and for any α ∈ N, we have

E (Uα | zi, τi;ψ,β, ξ) =

∫ ∞
0

uαi f (ui | zi, τi;ψ,β, ξ) dui

=

∫ ∞
0

uαi
Lcond (ψ,β | τi, ui; zi) f (ui | τi; ξ)

Lmarg (ψ,β, ξ | τi; zi)
dui,

with

Lcond (ψ,β | τi, ui; zi) =

 ni∏
j=1

(
h0(yij)ui exp(x>ijβ)

)δij exp (−uiHi·,c(yi)) exp (uiHi·,c(τi)) ,

f (ui | τi; ξ) =
exp (−uiHi·,c(τi)) f(ui; ξ)

L (Hi·,c(τi))
,

Lmarg (ψ,β, ξ | τi; zi) =

∫ ∞
0

Lcond (ψ,β | τi, ui; zi) f (ui | τi; ξ) dui.

Thus,

E (Uα | zi, τi;ψ,β, ξ) =

∫ ∞
0

udi+αi exp (−uiHi·,c(yi)) f(ui; ξ)dui∫ ∞
0

udii exp (−uiHi·,c(yi)) f(ui; ξ)dui

=
E
[
Udi+α exp (−UHi·,c(yi))

]
E
[
Udi exp (−UHi·,c(yi))

] ·



20 parfm: Parametric Frailty Models in R Package vignette, V. 1.4 (January 25th, 2017)

A.3. Conditional distribution of inverse Gaussian frailty

Let U ∼ IG?(θ), then the distribution of U | zi, τi;ψ,β, θ is

f(ui | zi, τi;ψ,β, θ) =
Lcond (ψ,β | τi, ui; zi) f(ui | τi; θ)

Lmarg (ψ,β, θ | τi; zi)
∝ Lcond (ψ,β | τi, ui; zi) f(ui | τi; θ)

∝

 ni∏
j=1

(
h0(yij)ui exp(x>ijβ)

)δij exp

− ni∑
j=1

H0(yij)ui exp(x>ijβ)


×
√

1

2πθ
u
−3
2

i exp

(
− 1

2θui
(ui − 1)2

)

∝ u
di−

3
2

i exp

−ui
 ni∑
j=1

H0(yij) exp(x>ijβ)

− 1

2θ
ui −

1

2θ

1

ui


= u

di−
3
2

i exp

−
 1

2θ
+

ni∑
j=1

H0(yij) exp(x>ijβ)

ui −
1

2θ

1

ui

 ,

which is proportional to the density of a generalised inverse Gaussian distribution (?, Sec-
tion A.3.6) with parameters given by Equations 10–12.
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