plsRglm: Partial Least Squares Regression for Generalized Linear Models

Provides (weighted) Partial least squares Regression for generalized linear models and repeated k-fold cross-validation of such models using various criteria <arXiv:1810.01005>. It allows for missing data in the explanatory variables. Bootstrap confidence intervals constructions are also available.

Version: 1.3.0
Depends: R (≥ 2.10)
Imports: mvtnorm, boot, bipartite, car, MASS
Suggests: plsdof, R.rsp, chemometrics, plsdepot
Enhances: pls
Published: 2021-03-15
Author: Frederic Bertrand ORCID iD [cre, aut], Myriam Maumy-Bertrand ORCID iD [aut]
Maintainer: Frederic Bertrand <frederic.bertrand at math.unistra.fr>
BugReports: https://github.com/fbertran/plsRglm/issues/
License: GPL-3
URL: https://fbertran.github.io/plsRglm/, https://github.com/fbertran/plsRglm/
NeedsCompilation: no
Classification/MSC: 62J12, 62J99
Citation: plsRglm citation info
Materials: NEWS
In views: MissingData
CRAN checks: plsRglm results

Documentation:

Reference manual: plsRglm.pdf
Vignettes: plsRglm: Manual
plsRglm: Algorithmic insights and applications

Downloads:

Package source: plsRglm_1.3.0.tar.gz
Windows binaries: r-devel: plsRglm_1.3.0.zip, r-release: plsRglm_1.3.0.zip, r-oldrel: plsRglm_1.3.0.zip
macOS binaries: r-release (arm64): plsRglm_1.3.0.tgz, r-release (x86_64): plsRglm_1.3.0.tgz, r-oldrel: plsRglm_1.3.0.tgz
Old sources: plsRglm archive

Reverse dependencies:

Reverse imports: bootPLS, plsRbeta, plsRcox

Linking:

Please use the canonical form https://CRAN.R-project.org/package=plsRglm to link to this page.