Package ‘tidytransit’

November 23, 2021

Type Package
Title Read, Validate, Analyze, and Map GTFS Feeds
Version 1.2.0

Description Read General Transit Feed Specification (GTFES) zipfiles into a list of R dataframes. Per-
form validation of the data structure against the specification. Analyze the headways and fre-
quencies at routes and stops. Create maps and perform spatial analy-
sis on the routes and stops. Please see the GTFS documentation here for more de-
tail: <https://gtfs.org/>.

License GPL
LazyData TRUE
Depends R (>=3.6.0)

Imports gtfsio (>=0.1.0), dplyr, data.table (>= 1.12.8), httr, rlang,
sf, hms, digest, checkmate, geodist

Suggests testthat, knitr, markdown, rmarkdown, ggplot2, scales,
lubridate

RoxygenNote 7.1.1
URL https://github.com/r-transit/tidytransit

BugReports https://github.com/r-transit/tidytransit
VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Author Flavio Poletti [aut, cre],
Daniel Herszenhut [aut] (<https://orcid.org/0000-0001-8066-1105>),
Mark Padgham [aut],
Tom Buckley [aut],
Danton Noriega-Goodwin [aut],
Angela Li [ctb],
Elaine McVey [ctb],
Charles Hans Thompson [ctb],
Michael Sumner [ctb],
Patrick Hausmann [ctb],

https://gtfs.org/
https://github.com/r-transit/tidytransit
https://github.com/r-transit/tidytransit
https://orcid.org/0000-0001-8066-1105

R topics documented:

Bob Rudis [ctb],
James Lamb [ctb],
Alexandra Kapp [ctb],
Kearey Smith [ctb],
Dave Vautin [ctb],
Kyle Walker [ctb]

Maintainer Flavio Poletti <flavio.poletti@hotmail.ch>
Repository CRAN
Date/Publication 2021-11-23 12:10:02 UTC

R topics documented:

Index

convert_times_to_hms e e e 3
feedlist. e e e e e 3
feed_contains e e e e e 4
filter_feed_by_area 4
filter_feed_by_date 5
filter_feed_by_stops. 5
filter_feed_by_trips o e e e 6
filter_StopsS e e e e e 7
filter_stop_times e e e e e e e 7
get_feedlist 8
get_route_frequency e 9
GEL_TOULe_GEOMELTY v v v v v v e i e e e e e e e e e e e e e 10
get_stop_frequency 10
GEL_ITIP_GEOMELTY o v v i it e i e e e e e e e e e 11
gtfs_as_sf L 12
gtfs_duke 13
gtfs_transform 13
plot.tidygtfs L e 14
print.tidygtfs e 14
1 0] 1) O 15
read_gtfs . . . L L L 17
TOULE_tYPE_NAMES . . .« o o ov v v e e e et e e e e e e e e e e e 18
set_api_Key e e 18
SEL_SEIVICEPAIETNl v v v v et it e e e e e e e e e e e e e e e e 19
sfas thl e 19
sf lines_to df L 20
sf_points_to_df 20
shapes_as_sf e e e e 21
stops_as_Sf e 21
summary.tidygtfs 22
travel _tIMES e 22
validate_gtfs 24
write_gtfs L 25

convert_times_to_hms 3

convert_times_to_hms Use hms::hms columns in feed

Description
Overwirtes character columns in stop_times (arrival_time, departure_time) and frequencies (start_time,
end_time) with times converted with hms: : hms ().

Usage

convert_times_to_hms(gtfs_obj)

Arguments

gtfs_obj a gtfs object in which hms times should be set, the modified gtfs_obj is returned

Value

gtfs_obj with added hms times columns for stop_times and frequencies

feedlist Dataframe of source GTFS data from Transitfeeds

Description

A dataset containing a list of URLs for GTFS feeds

Usage
feedlist

Format
A data frame with 911 rows and 10 variables:

id the id of the feed on transitfeeds.com

t title of the feed

loc_id location id

loc_pid location placeid of the feed on transitfeeds.com
loc_t the title of the location

loc_n the shortname fo the location

loc_lat the location latitude

loc_Ing the location longitude

url d GTES feed url

url_i the metadata url for the feed

filter_feed_by_area

Source

https://transitfeeds.com/

feed_contains Returns TRUE if the given gtfs_obj contains the table. Used to check
for tidytransit’s calculated tables in sublist

Description

Returns TRUE if the given gtfs_obj contains the table. Used to check for tidytransit’s calculated
tables in sublist

Usage

feed_contains(gtfs_obj, table_name)

Arguments
gtfs_obj gtfs object
table_name name as string of the table to look for

filter_feed_by_area Filter a gtfs feed so that it only contains trips that pass a given area

Description

Only stop_times, stops, routes, services (in calendar and calendar_dates), shapes, frequencies and
transfers belonging to one of those trips are kept.

Usage

filter_feed_by_area(gtfs_obj, area)

Arguments
gtfs_obj tidygtfs object
area all trips passing through this area are kept. Either a bounding box (numeric
vector with xmin, ymin, xmax, ymax) or a sf object.
Value

tidygtfs object with filtered tables

See Also

filter_feed_by_stops, filter_feed_by_trips, filter_feed_by_date

https://transitfeeds.com/

filter_feed_by_date 5

filter_feed_by_date Filter a gtfs feed so that it only contains trips running on a given date

Description

Only stop_times, stops, routes, services (in calendar and calendar_dates), shapes, frequencies and
transfers belonging to one of those trips are kept.

Usage

filter_feed_by_date(
gtfs_obj,
extract_date,
min_departure_time,
max_arrival_time

Arguments

gtfs_obj a gtfs feed

extract_date date to extract trips from this day (Date or "YYYY-MM-DD" string)
min_departure_time
(optional) The earliest departure time. Can be given as "HH:MM:SS", hms ob-
ject or numeric value in seconds.

max_arrival_time
(optional) The latest arrival time. Can be given as "HH:MM:SS", hms object or
numeric value in seconds.

Value

tidygtfs object with filtered tables

See Also

filter_stop_times, filter_feed_by_trips, filter_feed_by_trips, filter_feed_by_date

filter_feed_by_stops Filter a gtfs feed so that it only contains trips that pass the given stops

Description

Only stop_times, stops, routes, services (in calendar and calendar_dates), shapes, frequencies and
transfers belonging to one of those trips are kept.

6 filter_feed_by_trips

Usage

filter_feed_by_stops(gtfs_obj, stop_ids = NULL, stop_names = NULL)

Arguments
gtfs_obj tidygtfs object
stop_ids vector with stop_ids. You can either provide stop_ids or stop_names
stop_names vector with stop_names (will be converted to stop_ids)

Value

tidygtfs object with filtered tables

Note

The returned gtfs_obj likely contains more than just the stops given (i.e. all stops that belong to a
trip passing the initial stop).

See Also

filter_feed_by_trips, filter_feed_by_trips, filter_feed_by_date

filter_feed_by_trips Filter a gtfs feed so that it only contains a given set of trips

Description
Only stop_times, stops, routes, services (in calendar and calendar_dates), shapes, frequencies and
transfers belonging to one of those trips are kept.

Usage

filter_feed_by_trips(gtfs_obj, trip_ids)

Arguments
gtfs_obj tidygtfs object
trip_ids vector with trip_ids
Value

tidygtfs object with filtered tables

See Also

filter_feed_by_stops, filter_feed_by_area, filter_feed_by_date

filter_stops 7

filter_stops Get a set of stops for a given set of service ids and route ids

Description

Get a set of stops for a given set of service ids and route ids

Usage

filter_stops(gtfs_obj, service_ids, route_ids)

Arguments
gtfs_obj as read by read_gtfs()
service_ids the service for which to get stops
route_ids the route_ids for which to get stops
Value

stops table for a given service

Examples

library(dplyr)

local_gtfs_path <- system.file("extdata"”, "google_transit_nyc_subway.zip"”, package = "tidytransit”)
nyc <- read_gtfs(local_gtfs_path)

select_service_id <- filter(nyc$calendar, monday==1) %>% pull(service_id)

select_route_id <- sample_n(nyc$routes, 1) %>% pull(route_id)

filtered_stops_df <- filter_stops(nyc, select_service_id, select_route_id)

filter_stop_times Filter a stop_times table for a given date and timespan.

Description

Filter a stop_times table for a given date and timespan.

Usage

filter_stop_times(gtfs_obj, extract_date, min_departure_time, max_arrival_time)

8 get_feedlist

Arguments

gtfs_obj a gtfs feed
extract_date date to extract trips from this day (Date or "YYYY-MM-DD" string)
min_departure_time
(optional) The earliest departure time. Can be given as "HH:MM:SS", hms ob-
ject or numeric value in seconds.
max_arrival_time

(optional) The latest arrival time. Can be given as "HH:MM:SS", hms object or
numeric value in seconds.

Value

Filtered stop_times data.table for travel_times() and raptor().

Examples

feed_path <- system.file("extdata”, "sample-feed-fixed.zip"”, package = "tidytransit")
g <- read_gtfs(feed_path)

filter the sample feed
stop_times <- filter_stop_times(g, "2007-01-06", "06:00:00", "08:00:00")

get_feedlist Get list of all available feeds from transitfeeds API

Description

Get list of all available feeds from transitfeeds API

Usage

get_feedlist()

Value

a data frame with the gtfs feeds on transitfeeds

See Also
feedlist_df

Examples

Not run:
feedlist_df <- get_feedlist()

End(Not run)

get_route_frequency 9

get_route_frequency Get Route Frequency

Description

Calculate the number of departures and mean headways for routes within a given timespan and for
given service_ids.

Usage

get_route_frequency(
gtfs_obj,
start_time = "06:00:00",
end_time = "22:00:00",
service_ids = NULL

)
Arguments
gtfs_obj a list of gtfs dataframes as read by the trread package.
start_time analysis start time, can be given as "HH:MM:SS", hms object or numeric value
in seconds.
end_time analysis perdiod end time, can be given as "HH:MM:SS", hms object or numeric
value in seconds.
service_ids A set of service_ids from the calendar dataframe identifying a particular service
id. If not provided, the service_id with the most departures is used.
Value

a dataframe of routes with variables or headway/frequency in seconds for a route within a given
time frame

Note

Some GTFS feeds contain a frequency data frame already. Consider using this instead, as it will be
more accurate than what tidytransit calculates.

Examples

data(gtfs_duke)

routes_frequency <- get_route_frequency(gtfs_duke)
x <- order(routes_frequency$median_headways)
head(routes_frequency[x,])

10 get_stop_frequency

get_route_geometry Get all trip shapes for a given route and service

Description

Get all trip shapes for a given route and service

Usage

get_route_geometry(gtfs_sf_obj, route_ids = NULL, service_ids = NULL)

Arguments

gtfs_sf_obj tidytransit gtfs object with sf data frames

route_ids routes to extract
service_ids service_ids to extract
Value

an sf dataframe for gtfs routes with a row/linestring for each trip

Examples

data(gtfs_duke)

gtfs_duke_sf <- gtfs_as_sf(gtfs_duke)
routes_sf <- get_route_geometry(gtfs_duke_sf)
plot(routes_sf[c(1,1350),1)

get_stop_frequency Get Stop Frequency

Description

Calculate the number of departures and mean headways for all stops within a given timespan and
for given service_ids.

Usage

get_stop_frequency(
gtfs_obj,
start_time = "06:00:00",
end_time = "22:00:00",
service_ids = NULL,
by_route = TRUE

get_trip_geometry

Arguments

gtfs_obj

start_time

end_time

service_ids

by_route

Value

11

a list of gtfs dataframes as read by read_gtfs().

analysis start time, can be given as "HH:MM:SS", hms object or numeric value
in seconds.

analysis perdiod end time, can be given as "HH:MM:SS", hms object or numeric
value in seconds.

A set of service_ids from the calendar dataframe identifying a particular service
id. If not provided, the service_id with the most departures is used.

Default TRUE, if FALSE then calculate headway for any line coming through
the stop in the same direction on the same schedule.

dataframe of stops with the number of departures and the headway (departures divided by timespan)
in seconds as columns

Note

Some GTFS feeds contain a frequency data frame already. Consider using this instead, as it will be
more accurate than what tidytransit calculates.

Examples

data(gtfs_duke)

stop_frequency <- get_stop_frequency(gtfs_duke)
x <- order(stop_frequency$mean_headway)
head(stop_frequency[x, 1)

get_trip_geometry

Get all trip shapes for given trip ids

Description

Get all trip shapes for given trip ids

Usage

get_trip_geometry(gtfs_sf_obj, trip_ids)

Arguments

gtfs_sf_obj
trip_ids

Value

tidytransit gtfs object with sf data frames

trip_ids to extract shapes

an sf dataframe for gtfs routes with a row/linestring for each trip

12 gtts_as_sf

Examples

data(gtfs_duke)

gtfs_duke <- gtfs_as_sf(gtfs_duke)

trips_sf <- get_trip_geometry(gtfs_duke, c("t_726295_b_19493_tn_41", "t_726295_b_19493_tn_40"))
plot(trips_sf[1,]1)

gtfs_as_sf Convert stops and shapes to Simple Features

Description

Stops are converted to POINT sf data frames. Shapes are created as LINESTRING data frame.
Note that this function replaces stops and shapes tables in gtfs_obj.

Usage

gtfs_as_sf(gtfs_obj, skip_shapes = FALSE, crs = NULL, quiet = TRUE)

Arguments

gtfs_obj a standard tidytransit gtfs object
skip_shapes if TRUE, shapes are not converted. Default FALSE.

crs optional coordinate reference system (used by sf::st_transform) to transform
lon/lat coordinates of stops and shapes

quiet boolean whether to print status messages

Value

tidygtfs object with stops and shapes as sf dataframes

See Also

sf_as_tbl

gtfs_duke 13

gtfs_duke Example GTFS data

Description

Data obtained from https://data.trilliumtransit.com/gtfs/duke-nc-us/duke-nc-us.zip.

Usage

gtfs_duke

Format

An object of class tidygtfs (inherits from gtf's) of length 25.

See Also

read_gtfs

gtfs_transform Transform or convert coordinates of a gtfs feed

Description

Transform or convert coordinates of a gtfs feed

Usage

gtfs_transform(gtfs_obj, crs)

Arguments

gtfs_obj tidygtfs object

crs target coordinate reference system, used by sf::st_transform
Value

tidygtfs object with transformed stops and shapes sf dataframes

https://data.trilliumtransit.com/gtfs/duke-nc-us/duke-nc-us.zip

14

print.tidygtfs

plot.tidygtfs Plot GTFS stops and trips

Description

Plot GTFS stops and trips

Usage

S3 method for class 'tidygtfs'
plot(x, ...)

Arguments
X a gtfs_obj as read by read_gtfs()
further specifications
Value
plot
Examples

local_gtfs_path <- system.file("extdata”,

"google_transit_nyc_subway.zip”,
package = "tidytransit")

nyc <- read_gtfs(local_gtfs_path)
plot(nyc)

print.tidygtfs Print a GTFS object

Description

Prints a GTFS object suppressing the class attribute.

Usage

S3 method for class 'tidygtfs'
print(x, ...)

raptor 15

Arguments
X A GTFS object.
Optional arguments ultimately passed to format.
Value

The GTFS object that was printed, invisibly

Examples

Not run:

path = system.file("extdata",
"google_transit_nyc_subway.zip”,
package = "tidytransit"”)

g = read_gtfs(path)
print(g)

End(Not run)

raptor Calculate travel times from one stop to all reachable stops

Description

raptor finds the minimal travel time, earliest or latest arrival time for all stops in stop_times with
journeys departing from stop_ids within time_range.

Usage

raptor(
stop_times,
transfers,
stop_ids,
arrival = FALSE,
time_range = 3600,
max_transfers = NULL,
keep = "all”

Arguments

stop_times A (prepared) stop_times table from a gtfs feed. Prepared means that all stop time
rows before the desired journey departure time should be removed. The table
should also only include departures happening on one day. Use filter_stop_times()
for easier preparation.

transfers Transfers table from a gtfs feed. In general no preparation is needed.

16 raptor

stop_ids Character vector with stop_ids from where journeys should start (or end)

arrival If FALSE (default), all journeys start from stop_ids. If TRUE, all journeys
end at stop_ids.

time_range Departure or arrival time range in seconds. All departures from the first depar-
ture of stop_times (not necessarily from stop_id in stop_ids) within time_range
are considered. If arrival is TRUE, all arrivals within time_range before the
latest arrival time of stop_times are considered.

max_transfers Maximum number of transfers allowed, no limit (NULL) as default.

keep One of c("all", "shortest", "earliest", "latest"). By default, all journeys arriving
at a stop are returned. With shortest the journey with shortest travel time is
returned. With earliest the journey arriving at a stop the earliest is returned,
latest works accordingly.

Details

With a modified Round-Based Public Transit Routing Algorithm (RAPTOR) using data.table, earli-
est arrival times for all stops are calculated. If two journeys arrive at the same time, the one with the
later departure time and thus shorter travel time is kept. By default, all journeys departing within
time_range that arrive at a stop are returned in a table. If you want all journeys arriving at stop_ids
within the specified time range, set arrival to TRUE.

Journeys are defined by a "from" and "to" stop_id, a departure, arrival and travel time. Note that the
exact journeys (with each intermediate stop and route ids for example) is nof returned.

For most cases, stop_times needs to be filtered, as it should only contain trips happening on a
single day and departures later than a given journey start time, see filter_stop_times(). The
algorithm scans all trips until it exceeds max_transfers or all trips in stop_times have been
visited.

Value
A data.table with journeys (departure, arrival and travel time) to/from all stop_ids reachable by
stop_ids.

See Also

travel_times() for an easier access to travel time calculations via stop_names.

Examples

nyc_path <- system.file("extdata”, "google_transit_nyc_subway.zip", package = "tidytransit")
nyc <- read_gtfs(nyc_path)

you can use initial walk times to different stops in walking distance (arbitrary example values)
stop_ids_harlem_st <- c("301", "301N", "301S")
stop_ids_155_st <- c("A11", "ATIN", "A11S", "D12", "D12N", "D12S")
walk_times <- data.frame(stop_id = c(stop_ids_harlem_st, stop_ids_155_st),
walk_time = c(rep(600, 3), rep(410, 6)), stringsAsFactors = FALSE)

https://www.microsoft.com/en-us/research/publication/round-based-public-transit-routing/

read_gtfs 17

Use journeys departing after 7 AM with arrival time before 11 AM on 26th of June
stop_times <- filter_stop_times(nyc, "2018-06-26", 7x3600, 9*3600)

calculate all journeys departing from Harlem St or 155 St between 7:00 and 7:30
rptr <- raptor(stop_times, nyc$transfers, walk_times$stop_id, time_range = 1800,
keep = "all")

add walk times to travel times
rptr <- merge(rptr, walk_times, by.x = "from_stop_id", by.y = "stop_id")
rptr$travel_time_incl_walk <- rptr$travel_time + rptr$walk_time

get minimal travel times (with walk times) for all stop_ids

library(data.table)

shortest_travel_times <- setDT(rptr)[order(travel_time_incl_walk)][, .SD[1], by = "to_stop_id"]
hist(shortest_travel_times$travel_time, breaks = 360)

read_gtfs Read and validate GTFS files

Description

Reads GTFS text files from either a local .zip file or an URL and validates them against GTFS
specifications.

Usage

read_gtfs(path, files = NULL, quiet = TRUE)

Arguments
path The path to a GTFS . zip file.
files A character vector containing the text files to be read from the GTFS (without
the . txt extension). If NULL (the default) all existing files are read.
quiet Whether to hide log messages and progress bars (defaults to TRUE).
Value

A tidygtfs object: a list of tibbles in which each entry represents a GTFES text file. Additional tables
are stored in the . sublist.

See Also

validate_gtfs

18 set_api_key

Examples

local_gtfs_path <- system.file("extdata”, "google_transit_nyc_subway.zip”, package = "tidytransit")
gtfs <- read_gtfs(local_gtfs_path)
names(gtfs)

gtfs <- read_gtfs(local_gtfs_path, files = c("trips”, "stop_times"))
names(gtfs)

route_type_names Dataframe of route type id’s and the names of the types (e.g. "Bus")

Description
Extended GTFS Route Types: https://developers.google.com/transit/gtfs/reference/extended-route-
types

Usage

route_type_names

Format
A data frame with 136 rows and 2 variables:

route_type the id of route type

route_type_name name of the gtfs route type

Source

https://gist.github.com/derhuerst/b0243339e22c310bee2386388151elle

set_api_key Set TransitFeeds API key for recall

Description

Set TransitFeeds API key for recall

Usage
set_api_key()

Value

No value returned, function is used for setting environment variables

https://gist.github.com/derhuerst/b0243339e22c310bee2386388151e11e

set_servicepattern 19

set_servicepattern Calculate servicepattern ids for a gtfs feed

Description

Each trip has a defined number of dates it runs on. This set of dates is called a service pattern in
tidytransit. Trips with the same servicepattern id run on the same dates. In general, service_id
can work this way but it is not enforced by the GTFS standard.

Usage
set_servicepattern(
gtfs_obj,
id_prefix = "s_",

hash_algo = "md5",
hash_length = 7

)
Arguments
gtfs_obj tidytransit gtfs feed
id_prefix all servicepattern id will start with this string
hash_algo hashing algorithm used by digest
hash_length length the hash should be cut to with substr(). Use -1 if the full hash should be
used
Value

modified gtfs_obj with added servicepattern list and a table linking trips and pattern (trip_servicepatterns)

sf_as_tbl Convert stops and shapes from sf objects to tibbles

Description

Coordinates are transformed to lon/lat

Usage
sf_as_tbl(gtfs_obj)

Arguments

gtfs_obj tidygtfs object

20 sf_points_to_df

Value

tidygtfs object with stops and shapes converted to tibbles

See Also
gtfs_as_sf
sf_lines_to_df Adds the coordinates of an sf LINESTRING object as columns and
rows
Description

Adds the coordinates of an sf LINESTRING object as columns and rows

Usage
sf_lines_to_df/(
lines_sf,
coord_colnames = c("shape_pt_lon", "shape_pt_lat"),
remove_geometry = TRUE
)
Arguments
lines_sf sf object

coord_colnames names of the new columns (existing columns are overwritten)
remove_geometry
remove sf geometry column?

sf_points_to_df Adds the coordinates of an sf POINT object as columns

Description

Adds the coordinates of an sf POINT object as columns

Usage

sf_points_to_df(
pts_sf,
coord_colnames = c("stop_lon", "stop_lat"),
remove_geometry = TRUE

)

shapes_as_st 21

Arguments

pts_sf sf object

coord_colnames names of the new columns (existing columns are overwritten)
remove_geometry
remove sf geometry column?

shapes_as_sf Convert shapes into Simple Features Linestrings

Description

Convert shapes into Simple Features Linestrings

Usage

shapes_as_sf(gtfs_shapes, crs = NULL)

Arguments

gtfs_shapes a gtfs$shapes dataframe

crs optional coordinate reference system (used by sf::st_transform) to transform
lon/lat coordinates

Value

an sf dataframe for gtfs shapes

stops_as_sf Convert stops into Simple Features Points

Description

Convert stops into Simple Features Points

Usage

stops_as_sf(stops, crs = NULL)

Arguments
stops a gtfs$stops dataframe
crs optional coordinate reference system (used by sf::st_transform) to transform

lon/lat coordinates

22 travel times

Value

an sf dataframe for gtfs routes with a point column

Examples

data(gtfs_duke)

some_stops <- gtfs_duke$stops[sample(nrow(gtfs_duke$stops), 40),]
some_stops_sf <- stops_as_sf(some_stops)

plot(some_stops_sf)

summary.tidygtfs GTFS feed summary

Description

GTEFS feed summary

Usage
S3 method for class 'tidygtfs'
summary (object, ...)
Arguments
object a gtfs_obj as read by read_gtfs()

further specifications

Value

the tidygtfs object, invisibly

travel_times Calculate shortest travel times from a stop to all reachable stops

Description

Function to calculate the shortest travel times from a stop (given by stop_name) to all other stops
of a feed. filtered_stop_times needs to be created before with filter_stop_times() or
filter_feed_by_date().

travel times 23

Usage

travel_times(
filtered_stop_times,
stop_name,
time_range = 3600,
arrival = FALSE,
max_transfers = NULL,
max_departure_time = NULL,
return_coords = FALSE,
return_DT = FALSE

Arguments

filtered_stop_times
stop_times data.table (with transfers and stops tables as attributes) created with
filter_stop_times() where the departure or arrival time has been set. Alter-
natively, a filtered feed created by filter_feed_by_date() can be used.

stop_name Stop name for which travel times should be calculated. A vector with multiple
names is accepted.

time_range All departures within this range in seconds after the first departure of filtered_stop_times
are considered for journeys. If arrival is TRUE, all journeys arriving within time
range before the latest arrival of filtered_stop_times are considered.

arrival If FALSE (default), all journeys start from stop_name. If TRUE, all journeys
end at stop_name.

max_transfers The maximimum number of transfers

max_departure_time
Either set this parameter or time_range. Only departures before max_departure_time
are used. Accepts "HH:MM:SS" or seconds as a numerical value. Unused if
arrival is TRUE.

return_coords Returns stop coordinates as columms. Default is FALSE.

return_DT travel_times() returns a data.table if TRUE. Default is FALSE which returns a
tibble/tbl_df.

Details

This function allows easier access to raptor() by using stop names instead of ids and returning
shortest travel times by default.

Value

A table with travel times to/from all stops reachable by stop_name and their corresponding journey
departure and arrival times.

24 validate_gtfs

Examples

nyc_path <- system.file("extdata”, "google_transit_nyc_subway.zip", package = "tidytransit")
nyc <- read_gtfs(nyc_path)

Use journeys departing after 7 AM with arrival time before 9 AM on 26th June
stop_times <- filter_stop_times(nyc, "2018-06-26", 7%3600, 9%3600)

tts <- travel_times(stop_times, "34 St - Herald Sq", return_coords = TRUE)
library(dplyr)
tts <- tts %>% filter(travel_time <= 3600)

travel time to Queensboro Plaza is 810 seconds, 13:30 minutes
tts %>% filter(to_stop_name == "Queensboro Plaza") %>% pull(travel_time) %>% hms::hms()

plot a simple map showing travel times to all reachable stops

this can be expanded to isochron maps

library(ggplot2)

ggplot(tts) + geom_point(aes(x=to_stop_lon, y=to_stop_lat, color = travel_time))

validate_gtfs Validate GTFS file

Description

Validates the GTFS object against GTFS specifications and raises warnings if required files/fields
are not found. This function is called in read_gtfs.

Usage

validate_gtfs(gtfs_obj, files = NULL, quiet = TRUE, warnings = TRUE)

Arguments
gtfs_obj A GTFS object
files A character vector containing the text files to be validated against the GTFS
specification (without the . txt extension). If NULL (the default) the provided
GTFS is validated against all possible GTFS text files.
quiet Whether to hide log messages (defaults to TRUE).
warnings Whether to display warning messages (defaults to TRUE).
Value

A tidygtfs with a validation_result attribute. This attribute is a tibble containing the validation
summary of all possible fields from the specified files.

write_gtfs 25

Details

GTFS object’s files and fields are validated against the GTFS specifications as documented in
Google’s Static GTFS Reference:

* GTFS feeds are considered valid if they include all required files and fields. If a required
file/field is missing the function (optionally) raises a warning.

* Optional files/fields are listed in the reference above but are not required, thus no warning is
raised if they are missing.

 Extra files/fields are those who are not listed in the reference above (either because they refer
to a specific GTFS extension or due to any other reason).

Note that some files (calendar. txt, calendar_dates. txt and feed_info. txt) are conditionally
required. This means that:

* calendar. txt isinitially set as a required file. If it’s not present, however, it becomes optional
and calendar_dates. txt (originally set as optional) becomes required.

» feed_info. txt is initially set as an optional file. If translations. txt is present, however,
it becomes required.

Examples

local_gtfs_path <- system.file("extdata”, "google_transit_nyc_subway.zip”, package = "tidytransit")
gtfs <- read_gtfs(local_gtfs_path)
attr(gtfs, "validation_result")

gtfs$shapes <- NULL
validation_result <- validate_gtfs(gtfs)

should raise a warning
gtfs$stop_times <- NULL
validation_result <- validate_gtfs(gtfs)

write_gtfs Write a tidygtfs object to a zip file

Description

Write a tidygtfs object to a zip file

Usage

write_gtfs(gtfs_obj, zipfile, compression_level = 9, as_dir = FALSE)

https://developers.google.com/transit/gtfs/reference

26 write_gtfs

Arguments
gtfs_obj a tidygtfs object
zipfile path to the zip file the feed should be written to

compression_level
a number between 1 and 9.9, passed to zip::zip

as_dir if TRUE, the feed is not zipped and zipfile is used as a directory path. Files
within the directory will be overwritten.

Value

Invisibly returns gtfs_obj

Note

Auxilliary tidytransit tables (e.g. dates_services) are not exported.

Index

* datasets sf_lines_to_df, 20
feedlist, 3 sf_points_to_df, 20
gtfs_duke, 13 shapes_as_sf, 21
route_type_names, 18 stops_as_sf, 21

summary. tidygtfs, 22
convert_times_to_hms, 3

travel_times, 22

feed_contains, 4 travel_times(), 8, 16
feedlist, 3

filter_feed_by_area, 4,6 validate_gtfs, 17,24
filter_feed_by_date, 4, 5,5,6

filter_feed_by_date(), 22, 23 write_gtfs, 25

filter_feed_by_stops, 4, 5,6
filter_feed_by_trips, 4-6, 6
filter_stop_times, 5,7
filter_stop_times(), 15, 16, 22, 23
filter_stops, 7

get_feedlist, 8
get_route_frequency, 9
get_route_geometry, 10
get_stop_frequency, 10
get_trip_geometry, 11
gtfs_as_sf, 12, 20
gtfs_duke, 13
gtfs_transform, 13

hms: :hms(), 3

plot.tidygtfs, 14
print.tidygtfs, 14

raptor, 15
raptor(), 8, 23
read_gtfs, 17, 24
read_gtfs(), 11,22
route_type_names, 18

set_api_key, 18

set_servicepattern, 19
sf_as_tbl, 12, 19

27

	convert_times_to_hms
	feedlist
	feed_contains
	filter_feed_by_area
	filter_feed_by_date
	filter_feed_by_stops
	filter_feed_by_trips
	filter_stops
	filter_stop_times
	get_feedlist
	get_route_frequency
	get_route_geometry
	get_stop_frequency
	get_trip_geometry
	gtfs_as_sf
	gtfs_duke
	gtfs_transform
	plot.tidygtfs
	print.tidygtfs
	raptor
	read_gtfs
	route_type_names
	set_api_key
	set_servicepattern
	sf_as_tbl
	sf_lines_to_df
	sf_points_to_df
	shapes_as_sf
	stops_as_sf
	summary.tidygtfs
	travel_times
	validate_gtfs
	write_gtfs
	Index

